During the construction of a new underground line, archaeological excavations were carried out in the ancient, long-buried port of Naples.
They made it possible to study a six-meter thick deposit of sediment layers accumulated in the port over centuries. The geochemical analyses of these sedimentary deposits showed that the water of the port had been contaminated over the first six centuries AD with lead from the water circulation system of Naples and neighboring towns. This lead, which was the main component of the water pipes, dissolved into the water and spread into fountains and supply points before finally running into the port. Studying the isotopic composition of this element, i.e., the proportion of different lead isotopes[3] in the sediments makes it possible to retrace events that took place two thousand years ago.
The analyses mainly revealed two distinct lead isotopes, before and after the eruption of Vesuvius in 79 AD. They prove that the vast water supply system of the bay of Naples was destroyed by the volcanic eruption and reconstructed using lead from one or more different mining areas. This sudden change in the lead signal, which occurred about fifteen years after the eruption, suggests that the Romans repaired the aqueduct and water pipes over a relatively short period of time.
This study also helps reconstruct the different phases of Naples’ urban development in the 1st to 5th centuries AD. Lead is increasingly present in the sediments, suggesting an expansion of the hydraulic network or its intensification in the areas already supplied. From the beginning of the 5th century, however, the sediments are less contaminated, revealing that the water supply suffered further damage from barbarian invasions (the aqueduct was seized so as to cut off the town’s water supply), new eruptions of Vesuvius in 472 and 512, epidemics or the city’s economic and administrative collapse.
This interpretation of metal pollution in ancient port sediments, which makes it possible to retrace the history of a region, could be applied to other civilizations and geographical areas. In ongoing debates about the Anthropocene, this approach could provide new perspectives on the dynamics of human footprint on the environment.
CNRS (Délégation Paris Michel-Ange)